West of Scotland NEONATAL IV Drug Monographs

Sodium Chloride **SPECIAL CARE with PRESCRIBING**.

FORM 500ml fluid bag of 0.9% Sodium Chloride - LOW CONCENTRATION

2.7% Sodium Chloride POLYFUSOR - HIGH CONCENTRATION

OR

30% Sodium Chloride ampoules for preparation of a 2.7% solution

INDICATION Treatment or prevention of hyponatraemia

DOSE RANGE

AGE	SUPPLEMENTATION DOSE RANGE	ROUTE
Birth – 6 months	2 – 4 mmol/kg/day	IV Infusion
	may need higher supplementary doses in cases of extreme hyponatraemia*	

If serum sodium is >130mmol supplementation may not be necessary, especially if patient is on PN which can be tailored by pharmacy. Discuss with senior medical staff. Also consider effect of haemolysis on serum sodium results.

Ensure other sources of sodium are taken into account e.g. from PN / oral supplements

PRESCRIPTION OF CONTINUOUS INFUSION

SPECIAL CARE with PRESCRIBING.

Flow rates are expressed as ml/kg/hour NOT ml/hr

Draw up 50ml of 0.9% Sodium Chloride from a 500ml bag into a syringe (Peripheral) – LOW CONCENTRATION

This gives approximately:-

- 2mmol/kg/day of sodium at 0.5ml/kg/hour
- 4mmol/kg/day of sodium at 1ml/**kg**/hour

*THIS PROTOCOL IS RESERVED FOR <u>SEVERE HYPONATRAEMIA</u>
/ FLUID RESTRICTED PATIENTS AND IS FOR CENTRAL
ADMINISTRATION ONLY:

Draw up 50ml of a pre-made 2.7% Sodium Chloride POLYFUSOR into a syringe (Central) – HIGH CONCENTRATION

This gives approximately:-

- 6mmol/kg/day of sodium at 0.5ml/kg/hour
- 12mmol/kg/day of sodium at 1ml/kg/hour

RECONSTITUTION Already in solution.

DILUTION No dilution required.

METHOD OF For continuous Infusion
ADMINISTRATION By continuous intravenous

By continuous intravenous infusion, flow rate adjusted according to the

baby's response (see prescription section for details).

SEE PAGE 2 FOR DETAILS ON PREPARATION OF A 2.7%

SOLUTION IF POLYFUSORS AR NOT AVAILABLE

Sodium Chloride_IVWOSNeo Page 1 of 3

West of Scotland NEONATAL IV Drug Monographs

PREPARATION OF A 2.7% NaCI SOLUTION (IF POLYFUSORS NOT AVAILABLE)

RECONSTITUTION Already in solution

DILUTION

Sodium Chloride 30%	3ml	
Sodium Chloride 0.9%	Up to 50ml total in a syringe	

This gives a 2.7% sodium chloride solution which can be used as per the above HIGH CONCENTRATION protocol.

COMPATIBILITY See individual drug monographs

CAUTIONS, CONTRA-INDICATIONS AND SIDE EFFECTS

See Summary of Product Characteristics and most recent edition of BNF for Children (links below)

FURTHER INFORMATION

- Ensure plasma sodium does not increase by more than 10mmol/l per day.
- Doses > 6mmol/kg/day may be required but should be guided by serum level and senior medical staff
- Sodium content of 0.9% infusion = 150mmol/L
- Sodium content of 2.7% Polyfusor = 450mmol/L
- If plasma sodium levels within range but growth sub-optimal, check urinary sodium (target >40mmol/L)
- Caution with sodium correction in hyperglycaemia, discuss with pharmacy.
- The following calculation can be used as a guide to calculate the dose of sodium chloride required in mmol/kg/day:

Dose of sodium chloride required (mmol/kg/day) = (target level – serum sodium level) x 0.6

(SEE PAGE 3 FOR WORKED EXAMPLE)

PH 4.5 – 7

LICENSED STATUS Licensed

LINKS BNF for Children / Electronic Medicines Compendium:

APPLICABLE POLICIES West of Scotland Neonatal Guidelines:

Consult local policy if applicable

Document Number:	003	Supersedes:	002
Prepared by:	Anisa Patel	Checked by	WoS Neonatal Pharmacists
Date prepared	October 2017	Date updated	Oct 2020
Updated by	Anisa Patel	Review Date	Oct 2023

Administer reconstituted solutions immediately.

All vials, ampoules and infusion bags are for single use only unless otherwise stated.

Dose may vary depending on indication, age, renal function, hepatic function, and concomitant medications. This monograph should be used in conjunction with the package insert, BNF for Children, and Summary of Product Characteristics. For further advice contact your clinical pharmacist or pharmacy department.

Sodium Chloride_IVWOSNeo Page 2 of 3

Sodium Chloride

Worked Example

Baby M Weight 1.5kg Plasma Sodium 122mmol/L

Calculating the Sodium Deficit in Extreme Hyponatraemia

Step 1. Use the equation below to calculate the sodium deficit

NOTE Plasma sodium should not increase more than 10mmol/L day therefore if serum Na is 122 then target sodium should not be more than 132

Total Sodium deficit (mmol/kg) = (target level – serum sodium level) x 0.6
=
$$(132 - 122) \times 0.6$$

= 6mmol/kg/day

Step 2 Choose most appropriate route of administration for correction (Peripheral or Central)

Consider lines available and fluid status

Step 3 Prescribe appropriate dose and volume on infusion chart using information below

PERIPHERAL ADMINISTRATION (Sodium Chloride 0.9%)

6 mmol/kg/day = 1.5 ml/kg/hour

 $= 1.5 \times 1.5$ (weight)

= 2.25 (2.3 ml/hr)

CENTRAL ADMINISTRATION (Sodium Chloride 2.7% Polyfusor)

6mmol/kg/day = 0.5ml/kg/hour (Central)

 $= 0.5 \times 1.5$ (weight)

= 0.75ml/hr